
COIN Attacks: On Insecurity of
Enclave Untrusted Interfaces in SGX

Mustakimur Khandaker✦, Yueqiang Cheng↕, Zhi Wang✦, Tao Wei↕

Florida State University✦, Baidu Security↕

Background: Intel SGX

Intel Software Guard Extension:

A hardware-support for Trusted Execution
Environment (TEE).

A TEE is an isolated execution environment
(enclave) provides:

→ isolated execution.
→ integrity of enclave.
→ confidentiality of enclave data.

2

COIN Attacks: A Comprehensive Threat Model

O
rd

er

Co
nc

ur
re

nt
In

pu
t

M
an

ip
ul

at
io

n

3
N

es
te

d

Background: Enclave Definition Language (EDL)

4

List of
ECALL

List of
OCALL

Data-flow
Direction

Variable
Type

Extensible Framework for COIN Attacks

5

Fig: Overview of the enclave analysis
framework

Fig: Core module architecture

Framework Continued ...

6

[EMULATION] attempted sequence: ('ecall_create', 'ecall_use',
'ecall_destroy', 'ecall_create', 'ecall_destroy', 'ecall_use')
[UAF-REPORT] Potential Use-after-free (UAF) at 0xd2e: mov ecx, dword
ptr [rax]
Try to use memory at 0x30000064 - 0x30000067
Allocated memory range is 0x30000064 - 0x30000070
Allocated memory at 0xcc6 and Freed at 0xd7a

Recent 200 emulated instructions:
0xaace: mov rax, qword ptr [rbp - 8]
0xaad2: mov rdi, rax
0xaad5: call 0x12fa0
0x12fa0: push rsi
0x12fa1: mov rdx, rdi
...
0xd18: mov dword ptr [rbp - 4], edi
0xd1b: cmp qword ptr [rip + 0x2256fd], 0
0xd23: jne 0xd27
0xd27: mov rax, qword ptr [rip + 0x2256f2]
0xd2e: mov ecx, dword ptr [rax]
Seed information:
0x30000000 [0x55] 0x30000001 [0x41] 0x30000002 [0x46]
0x30000003 [0xff]

Fig: Sample report for use-after-free

Implemented Policies

7

Information Leak Memory Vulnerabilities Control-flow Hijack

Stack information leak Use after free Ineffectual Condition

Heap information leak Double free

Stack overflow

Heap overflow

Null pointer dereference

Policy: Heap Information Leak

1. The core module triggers an event to
notify the policy module about an
infinite loop it encounters.

2. The policy then checks whether the
loop condition is symbolic.

3. If the loop condition is symbolic, the
policy extracts the loop body and
analyzes whether it contains an OCALL
or not.

4. If there is an OCALL, the policy uses
the definition of the OCALL to identify
memory buffers in the parameters.

5. The policy reports a potential heap
memory leak if a pointer points to the
enclave heap and can be modified in
every iteration of the loop.

https://github.com/bl4ck5un/mbedtls-SGX/issues/16

8

https://github.com/bl4ck5un/mbedtls-SGX/issues/16

Policy: Use-after-free

In SGX, access to freed memory can cause an
enclave to crash, use unexpected values, or
even execute arbitrary code.

1. If a free function is called, the policy requests
the core module to pause the associated
thread until other threads have completed N
instructions.

2. If a memory dereference event is triggered,
the policy validates the respected memory
against the memory status and raises an alert
if the memory has been freed.

https://github.com/yerzhan7/SGX_SQLite/issues/2
https://github.com/intel/linux-sgx/issues/456

9

https://github.com/yerzhan7/SGX_SQLite/issues/2
https://github.com/intel/linux-sgx/issues/456

Policy: Ineffectual Condition

A conditional check in the enclave becomes
ineffectual if the attacker can control its
outcome. Therefore, an ineffectual condition
would allow attackers to bypass validation,
avoid authentication, etc.

1. An ineffectual condition is identified if both sides
of the condition contain symbolic variables or if
one side contains symbolic variables and the
other side is a constant.

2. It further checks whether the conditional check
is followed by an error code generator basic
block with an unconditional control transfer.

https://github.com/kudelskisecurity/sgx-reencrypt/issues/1

10

https://github.com/kudelskisecurity/sgx-reencrypt/issues/1

Policy: Null Pointer Dereference

Check if a dereferenced pointer is null?

Common Scenario:

➔ ECALL output param receives null pointer
from unsafe application.

➔ API code declares a counter null pointer.
➔ Enclave code uses memcpy() to copy enclave

data to the null pointer.

11

Evaluation

12

Evaluation Continued ...

13

Evaluation Continued ...

14

Configuration:
Machine: Intel Core i7, 32 GB memory.
OS: Ubuntu 18.04 LTS Server.
SDK: Intel SGX SDK (v2.5).
Compiler: Clang/LLVM (v9.0).
Symbolic Engine: Triton.
Emulator: QEMU.

Evaluation: Performance

Limitation:
● Instruction not recognized e.g. endbr64

from Intel CET (updated QEMU).
● ISA too complex e.g. Intel AES-NI

(complicated to handle by symbolic
engine).

● Nested calls (future work).

Runtime:
● Allocated 30 hrs for each project.
● Small projects e.g. SGX-Wallet finished within 4 hrs.
● Multi-thread mode of emulation is 6.5x higher

overhead than single-thread mode of emulation.

15

Conclusion

● We introduced the COIN attacks, a systematic analysis of the SGX
interface attack surface. It consists of concurrency, order, input, and
nested call attacks.

● We proposed the design of an extensible framework targeting the COIN
attacks.

● We implemented the design with 8 detection policies that cover many
common vulnerabilities.

● We evaluated our system with 10 open-source SGX projects and found
(and reported) 52 vulnerabilities, including a whole SGX memory leak.

16

https://github.com/mustakcsecuet/COIN-Attacks

https://github.com/mustakcsecuet/COIN-Attacks

